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On Euclidean invariance of algebraic Reynolds
stress models in turbulence
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This article shows how Euclidean invariance can be preserved in the so-called algebraic
Reynolds stress model (ARSM) approximation. This approximation is used to reduce
the transport equation for the Reynolds stresses to an explicit algebraic relation. A
number of known models, which make use of this approximation, are not form-
invariant under transformations to rotating coordinate systems. A simple extension
is presented to show how this artifact can be removed.

1. Introduction
That the physical laws must be the same for observers in different coordinate

systems is an almost trivial statement. The choice of the coordinate system cannot
influence the physics, because it is only a mathematical tool to describe the physics.
At a more sophisticated level this simple statement is expressed in terms of invariance
requirements of the laws of mechanics under a change of observer, known as an
Euclidean transformation. In short, the balance laws of mass, momentum and energy
are form-invariant under Euclidean transformations. However, they can depend on
the motion of the system, whenever the frame of reference is non-inertial.

Gatski & Speziale (1993), Girimaji (1996) and Wallin & Johansson (2000) employ
the so-called ARSM approximation, which is used to derive an algebraic relation from
the transport equation for the Reynolds stress tensor. However, their approximations
do not lead to Euclidean-invariant models. Wallin & Johansson (2000) write, “the
adequacy of the ARSM approach is coupled to the choice of a coordinate system . . .”.
Fundamentally this cannot be true: there is neither a better nor a worse coordinate
system, though sometimes it might be more convenient to make use of one in favour
of another.

The reason for this artifact is an error in the derivation of the ARSM approximation.
A non-objective term is neglected which results in a non-invariant model. Girimaji
(1997) corrects this. Unfortunately he makes use of a non-objective expression in the
formulation of the pressure/rate-of-strain tensor: the last term of equation (27) is
modelled with the non-objective antisymmetric part of the velocity gradient. There
is also a recent paper by Gatski & Jongen (2000) which attempts exactly what we
present in this paper, but due to an error in the calculation or a misprint their final
equation for the anisotropy tensor is not Euclidean objective: equation (123) in which
the last term of the first line contains a vorticity measure that is not form-invariant.
This paper shows how this can be corrected, and so can be regarded as a commentary
on the original papers of Girimaji (1997) and Gatski & Jongen (2000).
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2. Transformation of variables
A crucial element in demonstrating the necessary invariance properties of ARSMs

is to show how the various field quantities arising in the Reynolds stress balance
transform under change of reference frame. For simplicity, only transformations
between rotating systems with the same origin and with an arbitrary time-dependent
angular velocity ωk are considered. The space coordinates xl then transform as
follows:

x∗
i = Oilxl, with OT

il = O−1
il and Ωij := OT

il Ȯlj = εiljωl. (2.1)

Oil is an orthogonal time-dependent transformation and Ωij , usually called the
rotation tensor, is skew symmetric, Ωij = −Ωji . All variables in the transformed
system are identified with an asterisk. The most relevant physical variables for
algebraic Reynolds stress modelling are

vi : velocity vector,
Dij = 1

2
(∂jvi + ∂ivj ) : symmetric part of velocity gradient,

Wij = 1
2
(∂jvi − ∂ivj ) : antisymmetric part of velocity gradient,

k : turbulent kinetic energy,

ε : dissipation of turbulent kinetic energy,

Rij : Reynolds stress tensor,
aij = − 1

3
δij − Rij/(2k) : anisotropy tensor.




(2.2)

We will restrict attention to a viscous incompressible fluid with constant viscosity
µ and constant density ρ. Transformation according to equation (2.1) implies the
following variable connections between the new and old systems:

k∗ = k, ε∗ = ε,

D∗
ij = OilDlmOT

mj , R∗
ij = OilRlmOT

mj , a∗
ij = OilalmOT

mj .

}
(2.3)

Moreover, gradients transform as

∂∗
l = Olm∂m. (2.4)

For the antisymmetric part of the velocity gradient one may deduce

W ∗
ij = Oil(Wlm + Ωlm)OT

mj , (2.5)

and for the total time derivatives of Rij and aij one obtains

Ṙ∗
ij = Oil(Ṙlm + ΩlkRkm − RlkΩkm)OT

mj , (2.6)

ȧ∗
ij = Oil(ȧlm + Ωlkakm − alkΩkm)OT

mj . (2.7)

Note that the right-hand sides of equations (2.5), (2.6) and (2.7) involve system-
dependent terms whilst (2.3) does not.

3. Objective variables and invariance of transport equations
A scalar s, a vector bi and a tensor cij , that transform under Euclidean transform-

ations according to

s∗ = s, (3.1)

b∗
i = Oimbm, (3.2)

c∗
ij = OilclmOT

mj (3.3)
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are called objective variables, because they transform like geometric objects. Some
physical variables are objective (compare equation (2.3)), but some are not, such as the
velocity vector. It is not a ‘geometrical’ vector, and it cannot be interpreted as an
arrow, which can simply be ‘rotated’ from one system into another. Its definition
depends on the system: the total time derivative of the space vector from a particle
in a certain system.

Every physical law, a transport equation or balance law, must have the same
form in different systems, i.e. it must be form-invariant, though it may happen that
new terms enter the equation, which depend on the motion of the particular frame.
For example the Coriolis force is such a frame-dependent term in the momentum
equation. It is obvious that a transport equation constructed with objective terms
results in an invariant equation. Therefore, when postulating a closure relation for an
objective quantity, it is mandatory to express it in objective variables without using
the non-objective quantities.

In the following it will be assumed that the transformed system, denoted by the
asterisk is inertial. Space coordinates then transform into different rotating systems
according to

xi = OT
il x

∗
l . (3.4)

The angular velocity ω∗
i and the rotation tensor Ω∗

ij of the inertial system are by
definition zero. Any other transformed system can now be identified with a certain
angular velocity ωi and an associated rotation tensor Ωij = OT

il Ȯlj = εiljωl . Under
such circumstances the variables

W̃ij := Wij + Ωij , (3.5)

˜̇Rij := Ṙij + ΩilRlj − RilΩlj , (3.6)

˜̇aij := ȧij + Ωilalj − ailΩlj (3.7)

are objective, as follows immediately from equations (2.5), (2.6) and (2.7). The sym-
metric part of the velocity gradient Dij , the Reynolds stress tensor Rij , the anisotropy
tensor aij , the turbulent kinetic energy k and the dissipation rate of the turbulent
kinetic energy ε are all objective variables.

Now, the transport equation for the Reynolds stress tensor Rij , which is derived
after Reynolds averaging, can be transformed from the inertial system into any other
frame according to the transformation rule (3.4):

ρ ˜̇Rij = −Ril(Dlj − W̃lj ) − (Dil + W̃il)Rlj +
(
∂lΦ

Rij

l − εij − Πij

)
. (3.8)

The flux of the Reynolds stresses is denoted by Φ
Rij

l , the sources by Πij and the
dissipation by εij . The tensor Πij is also known as the pressure/rate-of-strain tensor.
In equation (3.8) half of the system-dependent term (resulting from the Coriolis

force) is included in the objective time derivative ˜̇R and the other half in the objective
antisymmetric part of the velocity gradient W̃ij . Because the whole expression (3.8) is
objective and the term on the left-hand side and the first two terms on the right-hand
side are also objective, one can conclude that (∂lΦ

Rij

l − εij − Πij ) is also an objective
term, which has to be modelled by using objective variables. This was observed by
Lumley (1970).
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4. System dependence of constitutive relations
It is usually assumed that material laws do not depend on the rotation of the

system, ωi . This means that in every system the material should show the same
behaviour. This is quite a good assumption as long as the relaxation time of the
material is large compared with the typical time scale of the flow.

In turbulence modelling one is dealing with closures and not with material laws. In
the broadest sense, subgrid flow properties are parameterized, so turbulence itself is
not a material property in the usual sense. In such flows the characteristic turbulent
time scale can be comparable with the typical time scale of the flow, implying that
the rotation of the system can influence the turbulent closure functionals. This means
that objective quantities, which depend on the rotation of the reference frame, may
enter such functional relations. It implies for example that the Reynolds stress tensor
Rij can depend on the ‘effective’ rotation tensor W̃ij , see equation (3.5), which is an
objective variable and depends on the rotation of the system. Nevertheless, it must be
ascertained that the whole set of field equations remains invariant under Euclidean
transformations, because this is equivalent to different observers looking at the same
flow.

5. Closures and the ARSM approximation
With the aid of the ARSM approximation first presented by Pope (1975) a

differential Reynolds stress equation can be reduced to an algebraic relationship.
Pope considered only two-dimensional mean flow and no rotation of the system. His
method was extended by Gatski & Speziale (1993) to three-dimensional mean flow in
rotating systems. Girimaji (1996) published an improved version for two-dimensional
mean flow and rotating systems.

In these approaches the pressure–strain correlation Πij is modelled as a tensorial
relation, which is quasi-linear in the anisotropy tensor aij . Gatski & Speziale (1993)
and Girimaji (1996), for example, use the representation

1

ρk
Πij ≈ −

(
c10

ε

k
− 2c11anlDln

)
aij + c2Dij

+ c3

(
Dilalj + ailDlj − 2

3
anlDlnδij

)
+ c4(W̃ilalj − ailW̃lj ), (5.1)

which is objective since it is modelled with objective variables Dij , W̃ij , k and ε;
c10, c11, c2, c3 and c4 are constants. The dissipation-rate tensor εij is assumed to be
isotropic and also objective:

εij = − 2
3
ρεδij . (5.2)

To arrive at an implicit algebraic expression for the Reynolds stress tensor the total
time derivative of the anisotropy tensor ȧij and the diffusion term of the Reynolds
stesses are neglected. That is,

ȧij ≈ 0, (5.3)

∂lΦ
Rij

l +
Rij

2ρk
∂lΦ

Rkk

l ≈ 0. (5.4)

This is called the ARSM approximation. However, this is not invariant modelling,
because the total time derivative in the approximation (5.3) is not objective. Each
observer has their own approximation, which should not be the case. This implies
that the so-called ‘effective’ mean rotation tensor is not objective and therefore the
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whole model is not invariant. The same remark applies to another proposition by
Wallin & Johansson (2000). An appropriate modelling would be

˜̇aij = ȧij + Ωilalj − ailΩlj ≈ 0. (5.5)

Together with equation (5.4) this is an objective approximation and therefore ensures
invariant modelling. If the closures (5.1) and (5.2) and the approximations (5.4) and
(5.5) are inserted in equation (3.8) and the emerging equation is rearranged, an implicit
algebraic equation for the anisotropy tensor aij is obtained as follows:

[2B1alnD̂nl − 1]aij = 1
3
B2D̂ij + B3

[
D̂ilalj + ailD̂lj − 2

3
D̂nlalnδij

]
+B4[Ŵ ilalj − ailŴ lj ],

(5.6)

with newly defined constants

B1 =
2 + c11

c10 − 2
, B2 =

4 − 3c2

c10 − 2
, B3 =

2 − c3

c10 − 2
, B4 =

2 − c4

c10 − 2
, (5.7)

and the dimensionless objective velocity gradients

D̂ij =
k

ε
Dij and Ŵ ij =

k

ε
W̃ij =

k

ε
(Wij + Ωij ). (5.8)

Now the implicit algebraic equation (5.6) for the anisotropy tensor aij can be solved
as suggested by Gatski & Speziale (1993), Girimaji (1996) or Wallin & Johansson
(2000) yielding an explicit expression for the anisotropy tensor aij and also for the
Reynolds stress tensor Rij . For two-dimensional mean flow this can be done exactly.
For general three-dimensional mean flows equation (5.6) cannot be solved analytically:
a complicated nonlinear system of equations for the five unkown independent terms
of the anisotropy tensor aij is obtained, which is not amenable to exact solutions.
Again approximations must be introduced. However, up to now it is not clear which
approximation is the best.

Comparing these results with those of Gatski & Speziale (1993), Girimaji (1996) or
Wallin & Johansson (2000), it can be seen that to make the proposed ARSM closures
form-invariant, one need only change the expressions involving the vorticity tensor:
instead of (k/ε) Wij the dimensionless effective mean rotation tensor Ŵij , defined in
equation (5.8), must be used. Nothing else changes.

Girimaji (1997) and Gatski & Jongen (2000) attempt to do exactly what we present
in this paper. Although Girimaji (1997) has a somewhat different notation, both papers
make use of an objective ARSM approximation. Unfortunately they do not arrive
at a form-invariant model. Their final equations contain vorticity terms that are not
objective. While Gatski & Jongen (2000) have an error in their calculation, Girimaji
(1997) models the pressure/rate-of-strain tensor with the non-objective antisymmetric
part of the velocity gradient.

6. Conclusions
It has been shown how the algebraic Reynolds stress models of Gatski & Speziale

(1993), Girimaji (1996) and Wallin & Johansson (2000) can be changed into form-
invariant models. If the proposed modifications are implemented, the choice of the
coordinate system can no longer affect the adequacy of the models. The correction
has no effect for non-rotating systems, but it involves a new calibration whenever
rotating systems are considered.
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